3D Low Mach Simulations of Convective Urca Process in White Dwarf

Brendan Boyd

What is the Urca Process?

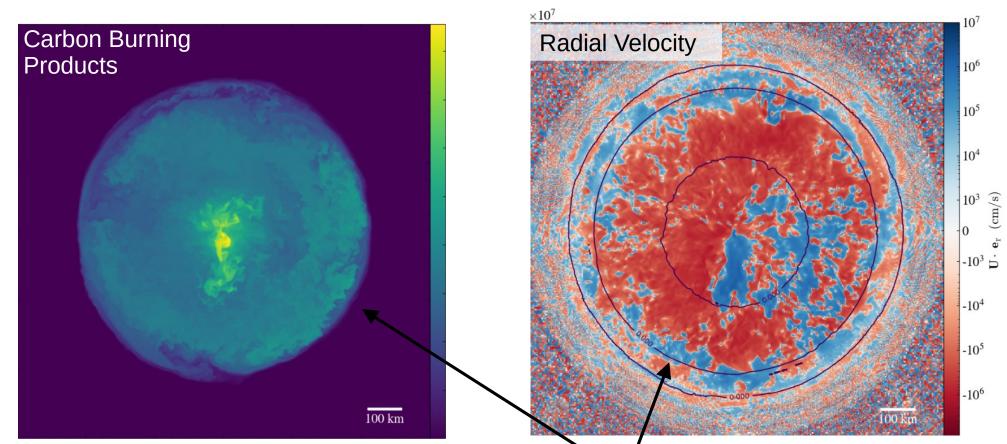
• Pairs of beta decay \leftrightarrow electron capture reactions. E.g. **Convecting White Dwarf** $^{23}\text{Ne} \rightarrow ^{23}\text{Na} + e^- + \bar{\nu}_e$ 23 Na + e⁻ \rightarrow 23 Ne + ν_e Carbon burning in core drives Beta decay at low density (far from convection core of WD) Electron capture at high density (near • core of WD) \int • Can be important in white dwarfs • Remnant of a star, mostly made of Carbon and Oxygen Equilibrium zone called Urca shell, splits WD

- explosion

 Incredibly bright and useful distance indicators

 Exploding white dwarf(s) • Undetermined how the white dwarf is exploding

 Structure of white dwarf impacts • Urca process changes structure


3D Low Mach Simulations of Convective Urca Process in White Dwarf

Brendan Boyd

MAESTROeX Code

- A Fortran/C++ hydrodynamic grid based code
 - Parallelization w/ MPI and OpenMP
 - GPU support w/ CUDA
 - Scales well over 10,000 cores
- Evolve fluid equations (w/ a low mach constraint) and nuclear reactions
- Low mach code. For slow moving fluids:
 - Run longer, more accurate simulations than standard hydrodynamic codes

Simulation Results

- Preliminary findings indicate convection limitted to urca shell
 - Restricted convection can influence products of supernova explosion
- Future work to include more urca pairs (²⁵Mg / ²⁵Na). Test under different white dwarf conditions (temperature and density), and eventually blow up the models!

Scan for MAESTROeX